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Abstract. After a short introduction into experimental foundations of
general relativity, an overview of modern relativistic modelling of astro-
nomical observations is given. The principal relativistic e�ects in various
kind of observations are reviewed, and the problems for increasing accu-
racy of the astrometric catalogs due to general relativity are formulated.

1. Introduction

The rapid increase of observational accuracy of astronomical observations makes
it indispensable to use general relativity to model observational data. Recogniz-
ing this fact, the IAU adopted in 1991, and several times afterwards re�ned, a
relativistic framework to be used for the model. This paper gives an overview
of the general scheme of the relativistic modelling of astronomical data and the
principal observable relativistic e�ects.

2. Experimental foundations of general relativity

Although Einstein's general relativity is by no means the only theory of gravita-
tion, it seems to be the most simple one among the theories successfully passing
all the observational tests. Let us �rst brie
y review the experimental founda-
tions of general relativity. A very detailed overview of the modern experimental
foundations of gravitational physics can be found in Will (1998). The basic prin-
ciple of the theory is called the Einstein Equivalence Principle. This principle
consists of three parts. The �rst is the Weak Equivalence Principle stating that
the masses on the both sides of the Newtonian gravitational law,

miner �r
i = �GmgravM r

i
= r

3
;

exactly coincide miner � mgrav. This has been tested in many di�erent exper-

iments with a precision of j�mj=m < 5 � 10�13. The second part is the local
Lorentz invariance, that is, the postulate of special relativity stating that the
light velocity in vacuum, c, is constant in any inertial reference system. This has
been tested at a level of j�cj=c < 10�21. The third part is the local positional
invariance which can be tested by measuring the gravitational red shift

�� = � = (1 + �) c�2�U;

where � = 0 in general relativity. Again, a number of di�erent experiments have
proved that j�j < 2 � 10�4.
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However, the Einstein Equivalence Principle does not necessarily imply gen-
eral relativity. There exists a number of alternative metric theories of grav-
ity compatible with that Principle, but producing di�erent observable e�ects.
Therefore, the observable predictions of general relativity should be further
tested. The most important tests of general relativity are: (1) the Mercury
perihelion shift measured mainly by Mercury radar ranging with a precision of
0:0012, (2) the gravitational light de
ection measured by Hipparcos with a pre-
cision of 0:003, (3) the gravitational signal retardation (Shapiro e�ect) measured
by Viking radar ranging with a precision of 0:002, (4) the di�erential Shapiro
e�ect measured by geodetic VLBI observations with a precision of 0:0003, (5)
the geodetic precession observed by Lunar Laser Ranging (LLR) with a preci-
sion of 0:007, and �nally (6) the Nordtvedt e�ect also measured by LLR with
a precision of 0:001. This allows one to conclude that the main observable pre-
dictions of general relativity have been tested with a precision of � 0:1%. A
special theoretical framework called Parametrized Post-Newtonian (PPN) for-
malism can be used here to describe the experimental results as constraints on
the numerical values of the PPN parameters �, 
, etc. that can often be found
in the literature.

Future space missions will give us the opportunity to test general relativity
with even better accuracy. It is su�cient to mention here the STEP project
intended to test the Weak Equivalence Principle with a precision of 10�18, FAME
which will be able to test the gravitational light de
ection with a precision of
10�4 or slightly better, GAIA and SIM which will measure the same e�ect with
a precision of 10�6, and Gravity Probe B designed to measure the geodetic
precession with a precision of 5 � 10�5.

3. General scheme of relativistic modelling of astronomical observa-
tions

The general scheme of relativistic modelling of astronomical observational
data is represented in Fig. 1. Starting from the general theory of relativity one
should de�ne at least one relativistic 4-dimensional reference system covering the
region of space-time where all the processes constituting particular kinds of as-
tronomical observations are located. Typical astronomical observations depicted
in Fig. 2 consists of four constituents to be modelled. The equations of motion
of both the observed object and the observer relative to the chosen reference sys-
tem should be derived and a method to solve these equations should be found.
Typically the equations of motion are second-order di�erential equations, and
numerical integration can be used to solve them. What the observer observes
is the electromagnetic signals come from the object. The equations of motion
of the object and the observer and the equations of light propagation enable
one to compute positions and velocity of the object, observer and the photon
(light ray) with respect to the particular reference system at a given moment of
coordinate time, provided that the positions and velocities at some initial epoch
are known. However, these positions and velocities obviously depend on the
reference system used. On the other hand, the results of observations cannot
depend on the reference system used to theoretically model the observations.
Therefore, one more step of modelling is needed: the relativistic description of
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Figure 1. General principles of relativistic modelling of astronomical
observations.
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Figure 2. Four parts of an astronomical event: 1) motion of the
observed object, 2) motion of the observer, 3) propagation of an elec-
tromagnetic signal from the observed object to the observer, 4) the
process of observation.

the process of observation. This allows one to compute a coordinate-independent
theoretical prediction of the observables starting from the coordinate-dependent
position and velocity of the observer and, in some cases, the velocity of the
electromagnetic signal at the point of observation.

The mathematical techniques used to derive the equations of motion of the
observed object and the observer, and the equations of light propagation and
those describing the process of observation in the framework of general relativity
are well known. These three parts can now be combined into relativistic models
of observables. The models give an expression for each observable under consid-
eration as a function of a set of parameters. These parameters should be �t to
observational data to produce astronomical reference frames, which represent a
set of best estimates of certain parameters appearing in the relativistic models of
observables. For example, the International Celestial Reference Frame (ICRF)
represents a catalog of coordinates of extragalactic radio sources with respect
to the Barycentric Celestial Reference System (BCRS), which is a well-de�ned
relativistic 4-dimensional reference system.

It is very important to understand at this point that the relativistic models
contain parameters which are de�ned only in the chosen reference system and
are thus coordinate-dependent. A good example of such coordinate-dependent
parameters are the coordinates and velocities of various objects at some initial
epoch. On the other hand, from a physical point of view any reference system
covering a region of space-time under consideration can be used to describe
physical phenomena within that region, and we are free to choose the reference
system to be used to model the observations. However, some reference systems,
in which mathematical description of physical laws is simpler than in others, are
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more convenient for practical calculations. Therefore, one can use the freedom
to chose the reference system to make the parametrization as convenient and
reasonable as possible (e.g., one prefers the parameters to have simpler time-
dependence).

These convenient reference systems are called local reference systems. The
principal physical idea of local reference systems are illustrated in Fig 3. Cur-
rently there exist two well-developed theoretical formalisms to solve the problem
of local reference systems in General Relativity: the Brumberg-Kopeikin formal-
ism (see, e.g., Brumberg, 1991; Kopeikin, 1991; Klioner, Voinov, 1993) and the
Damour-So�el-Xu formalism (Damour et al., 1991, 1992, 1993). The results of
these formalisms prove that a local reference system of a massive extended body
in general relativity has two properties: (A) the gravitational �eld of external
bodies is represented in the form of tidal potentials being O(X2), where X i are
local coordinates; (B) the internal gravitational �eld of the body coincides with
the gravitational �eld of a corresponding isolated source provided that the tidal
in
uence of the external matter is neglected. The IAU recommendations (both
IAU (1991), and the new proposal) are based, in fact, on the results of these
two formalisms. Various parameters of the models de�ned in such local refer-
ence systems usually can be reasonably interpreted at some level of accuracy
neglecting the fact that the parameters are de�ned in one particular reference
system and have, generally speaking, no physical meaning. For example, at a
sub-millimeter level of accuracy the local geocentric coordinates of Earth-bound
stations derived from VLBI, GPS, SLR and other techniques can be interpreted
directly in the framework of Newtonian geodynamics.

For a system of N massive bodies N + 1 reference systems are considered:
one global reference system covering the whole space-time (t; xi) and one local
reference system (T;Xa) for each of the bodies. Each reference system is de�ned
by the structure of its metric tensor. Thus, for the global reference system (t; xi)
the metric tensor reads.

g00 = �1 + 2 c�2w(t;x)� 2 c�4w2(t;x) + O(c�5);

g0i = �4 c�3wi(t;x) +O(c�5);

gij = �ij

�
1 + 2 c�2w(t;x)

�
+O(c�4):

Here w and wi are the post-Newtonian gravitational potentials. The metric ten-
sors of each local reference system have the same functional form, but with local
post-Newtonian potentials W and W a. The theory also gives the 4-dimensional
coordinate transformations between any local reference system (T;Xa) and the
global one (t; xi). The explicit form of the metric tensors and the coordinate
transformations are given in the papers devoted to the Brumberg-Kopeikin and
the Damour-So�el-Xu formalisms cited above.

4. Principal relativistic e�ects

Let us now review the most important relativistic e�ects appearing in typical
astronomical observations. The e�ects can be divided into the e�ects in rela-
tivistic equations of motion (translational and rotational), the e�ects in light
propagation and the e�ects in the conversion to observables.
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Figure 3. The basic idea of a local reference system can be illustrated
with the help of these two pictures. The upper picture is a graphical
representation of the curved space-time produced by a system of one
massive central body (say, the Sun) and two less massive ones (say, two
planets). If the system as a whole is to be described, all three sources
of the gravitational �eld should be described uniformly. However, if
only a relatively small vicinity of one of the bodies is to be considered,
one can introduce a more convenient reference system called a local
reference system. Since the background curvature due to the two other
bodies changes very slowly within that region, a local reference system
(see, lower picture) can be introduced, where only the curvature due
to the body considered is e�ectively seen. It is intuitively clear that
the background curvature of the space-time still appears in the local
reference system, but in tidal form.
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4.1. Translational motion

The principal relativistic e�ects in the translational motion are contained in the
so-called Einstein-Infeld-Ho�mann (EIH) equations of motion of N gravitating
bodies, whose gravitational �elds can be described by their masses MA only:

�xA = �

X
B 6=A

GMB

xA � xB

jxA � xBj3
+

1

c2
FpN (MB;xB; _xB) +O(c�4):

Deriving these equations requires all the terms in the metric tensor speci�ed
above. Various parts of these equations represent: (1) perihelion shifts (�43
00/cty for Mercury, �10 00/cty for Icarus, etc.); (2) geodetic precession (�2 00/cty
for the lunar orbit); (3) various periodic relativistic e�ects (important mostly for
LLR and binary pulsar timing observations). Further e�ects not contained in
the EIH equations are the e�ects due to rotation of the bodies (Lense-Thirring
or gravitomagnetic e�ects) and those due to non-sphericity of the gravitating
bodies. These additional e�ects are marginal for the current accuracy of LLR
and SLR. Depending on the problem, both a global barycentric reference system
(e.g., for the motion of planets) and a local geocentric reference system (e.g., for
the motion of an Earth satellite) can be used.

4.2. Rotational motion

Adequate relativistic description of rotational motion (e.g., of the Earth) re-
quires the use of the local reference system of the body under study. The post-
Newtonian equations of motion read

d
2
S
i
= dt

2 = L
i
N + c

�2
L
i
pN +O(c�4);

where Si is the relativistic spin of the body, Li
N and L

i
pN are the Newtonian

and post-Newtonian torques, respectively (see, Klioner and So�el, 1998 and
reference therein for further details). Again the full post-Newtonian metric
tensor is required to derive these equations. The most important e�ects in the
Earth's rotation are the geodetic precession (� 1:914 00/cty) and nutation (� 153
�as), and the e�ects due to Li

pN (� 1�as for the Earth and up to 1 mas for the

Moon).

4.3. Light propagation

The post-Newtonian equations of light propagation read

x(t) = x0(t) + c� (t� t0) + c
�2 SpN (t) + c

�3 S1:5pN(t) + c
�4 SppN(t);

where SpN and SppN are the post-Newtonian and post-post-Newtonian e�ects,
and S1:5pN is the additional e�ect induced by the motion of gravitating matter
(i.e., by translational and rotational motion of the gravitating bodies). The
terms of order of c�2 in both g00 and gij are required to derive SpN(t). The

terms of order of c�4 in both g00 and gij are needed for SppN , and the terms

c
�3 in g0i for S1:5pN . The principal observable e�ects in light propagation are
(1) the gravitational light de
ection (amounting to 1.0075 for a light ray grazing
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the Sun) and (2) the gravitational signal retardation (the Shapiro e�ect). This
e�ect amounts to � 240 �s for the radar ranging of Venus in upper conjunction.

For the planned astrometric space missions it is obviously important to
model the gravitational light de
ection with high accuracy. Table 1 illustrates
the post-Newtonian and post-post-Newtonian gravitational light de
ection due
to the Sun, the Moon and the 8 major planets. Beside the e�ects shown in
Table 1, the light de
ection S1:5pN due to translational and rotational motion
of the gravitating bodies may amount to � 1�as. A detailed discussion of
various e�ects can be found in (Klioner and Kopeikin, 1992). It is interesting to
note that a number of smaller bodies should also be taken into account. For a
spherical homogeneous body with density �, the light de
ection is larger than �
if its radius

R �

�
�

1 g=cm3

�
�

�
�

1�as

�
� 650 km:

Therefore, at a level of 10 �as one should account for Io (30 �as), Europa (19
�as), Ganymede (35 �as), Callisto (28�as), Titan (32 �as) and Triton (20 �as).
The in
uence of the Galilean satellites attains 1 �as at the angular distance of
11{3200. At a level of 1 �as one should additionally account for Pluto (7 �as),
Charon (4�as), Iapetus, Rea, Dione, Ariel, Umbriel, Titania, Oberon and Ceres
(1{3 �as).

body pN Q ppN

Sun 1.7500 (180�) �1 11 (530)
Mercury 83 (90) | |
Venus 493 (4.5�) | |
Earth 574 (178�/124�) | |
Moon 26 (9�/5�) | |
Mars 116 (250) | |
Jupiter 16300 (90�) 240 (30) |
Saturn 5800 (18�) 95 (5100) |
Uranus 2100 (720) 25 (600) |
Neptune 2600 (510) 10 (300) |

Table 1. Various components of the gravitational light de
ection: pN
and ppN are the post-Newtonian and post-post-Newtonian e�ects due
to the spherically symmetric �eld of each body, Q are the e�ects due
to non-sphericity of the bodies. The symbol \|" means that the e�ect
is smaller than 1 �as. The values in parentheses are maximal angular
distances between the body and the source at which the corresponding
e�ect still attains 1 �as. The observer is supposed to be in the vicinity
of the Earth. For the Earth and Moon two estimations are given: for a
geostationary satellite and for a satellite at a distance of 106 km from
the Earth.
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4.4. Conversion to observables: proper direction

As mentioned above, the conversion of the coordinate-dependent quantities into
coordinate-independent observables is an important part of the relativistic mod-
els. Mathematically the coordinate-independent quantities are scalars, and spe-
cial mathematical techniques are known to perform the conversion in each par-
ticular case. One of the most important application of this conversion procedure
is a conversion of the coordinate angle between two sources 'coord into the cor-
responding observable angle 'obs:

'obs = 'coord+ c
�1

S1 + c
�2

S2 + c
�3

S3 +O(c�4);

where Si('coord;vo) are the aberrational e�ects of the i-th order, and vo is the
coordinate velocity of the observer. S1 is the classical Newtonian aberration.
The explicit expression for Si can be found, e.g., in (Klioner, Kopeikin, 1992).
For jvoj � 40 km=s one has jc�1S1j � 2800, jc�1S2j � 3:6 mas and jc

�1
S3j �

1 �as. Note also that the higher-order aberrational e�ects Si, i > 1 are nonlinear
with respect to the velocity vo and cannot be divided into pieces like \annual"
and \diurnal" aberrations. Let us also note a challenge for the planned space
missions: in order to calculate c�1 S1 with an accuracy of 1 �as, the velocity of
the satellite vo must be known with an accuracy of 10�3 m/s.

4.5. Conversion to observables: proper time

Another important case is the conversion of intervals of the coordinate time t
into the corresponding intervals of the proper time � of an observer. The general
form of the conversion reads

d� = dt = 1+ c
�2
ApN + c

�4
AppN +O(c�5);

where ApN and AppN are the post-Newtonian and post-post-Newtonian terms,
respectively. The explicit form of these two functions depends on the metric
tensor. In order to compute for ApN , the terms of order of c�2 in g00 are

needed, while the terms of order of c�4 in g00, c
�3 in g0i, and c

�2 in gij are

required to compute AppN . Typically in the solar system jc
�2
ApN j � 10�8 and

jc
�4
AppN j � 10�16. Therefore, the post-post-Newtonian terms AppN are needed

to cope with modern high-precision clocks, the stability of which may attain
10�18 in the near future. Let us also mention that in order to compute the drift
rate of a clock on the Earth with a precision of 10�18, its height above the geoid
should be known with an accuracy of � 9 mm and the tidal deformations of
the Earth's surface should be known with even better accuracy. This probably
means that the future TAI-like time scales having a precision of 10�18 or better
will be based on space-based clocks.

5. Increasing astrometric accuracy and relativity

General relativity seems to bring several complications for increasing astrometric
accuracy below some level. The �rst one to mention is the so called weak mi-
crolensing which is simply the gravitational de
ection of the light coming from a
distance source produced by the gravitational �eld of a visible or invisible object
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situated between the observed source and the observer. For an object of mass
M at a distance r from the solar system and at an angular distance ' from
the source assumed to be much further than the de
ecting object the de
ection
angle �' reads

�' � (M =Msun) � (r = 1pc)
�1

� (tan' = tan 100 )�1 � 8000 �as:

For example, for M = 0:1Msun, r = 20pc and ' = 500, the e�ect of lensing is
�' = 8�as. The problem is not the gravitational de
ection itself, but its time
dependence (otherwise the constant changes in the positions of the sources could
be absorbed in the \observed" positions as in the case of secular aberration).
In the numerical example above, the change of the angular distance by �' =
1 00
=yr produces a change in the gravitational de
ection angle ��' = 1:3�as=yr.

It is clear that weak microlensing leads to unpredictable (and in some cases
undetectable) errors in proper motions of the sources. A statistical analysis of
this e�ect is given in Sazhin et al. (1998) and references therein.

Further e�ects to be mentioned are the gravitational lensing on stochastic
(unpredictable) gravitational waves (Pyne et al., 1996; Kopeikin et al., 1999),
and the necessity to consider cosmological models to interpret the distance data
(1�as accuracy of parallaxes allows one to measure the distance to the objects
as far as 1 Mpc away from the solar system. See, Kristian and Sachs (1965) for
a discussion of the astrometric consequences of cosmology).
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